Cyclic polyamides for recognition in the minor groove of DNA.

نویسندگان

  • J Cho
  • M E Parks
  • P B Dervan
چکیده

Small molecules that specifically bind with high affinity to any designated DNA sequence in the human genome would be useful tools in molecular biology and potentially in human medicine. Simple rules have been developed to rationally alter the sequence specificity of minor groove-binding polyamides containing N-methylimidazole and N-methylpyrrole amino acids. Crescent-shaped polyamides bind as antiparallel dimers with each polyamide making specific contacts with each strand on the floor of the minor groove. Cyclic polyamides have now been synthesized that bind designated DNA sequences at subnanomolar concentrations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chapter 9 Minor Groove Recognition of T , A Base Pairs by Benzothiophene / Pyrrole Pairs

Polyamides are designed oligomers that can bind to DNA in a sequence-specific manner with affinities comparable to those of natural DNA-binding proteins. Recently, an N-terminal 3-chloro-6-fluorobenzothiophene polyamide bound in the minor groove of DNA was co-crystallized at 1.1 Å resolution as an antiparallel dimer. In addition, antimicrobial screenings for this polyamide family and the develo...

متن کامل

Importance of minor groove binding zinc fingers within the transcription factor IIIA-DNA complex.

The gene-specific transcription factor IIIA (TFIIIA) binds to the internal promoter element of the 5 S rRNA gene through nine zinc fingers which make specific DNA contacts. Seven of the nine TFIIIA zinc fingers participate in major groove DNA contacts while two fingers, 4 and 6, have been proposed to bind in or across the minor groove. Pyrrole-imidazole polyamides are minor groove binding ligan...

متن کامل

Allosteric Analysis of Glucocorticoid Receptor-DNA Interface Induced by Cyclic Py-Im Polyamide: A Molecular Dynamics Simulation Study

BACKGROUND It has been extensively developed in recent years that cell-permeable small molecules, such as polyamide, can be programmed to disrupt transcription factor-DNA interfaces and can silence aberrant gene expression. For example, cyclic pyrrole-imidazole polyamide that competes with glucocorticoid receptor (GR) for binding to glucocorticoid response elements could be expected to affect t...

متن کامل

Extension of Sequence-Specific Recognition in the Minor Groove of DNA by Pyrrole-Imidazole Polyamides to 9-13 Base Pairs

The sequence-specific recognition of the minor groove of DNA by pyrrole-imidazole polyamides has been extended to 9-13 base pairs (bp). Four polyamides, ImPyPy-Py-PyPyPy-Dp, ImPyPy-G-PyPyPy-Dp, ImPyPyâ-PyPyPy-Dp, and ImPyPy-γ-PyPyPy-Dp (Im ) N-methylimidazole, Py ) N-methylpyrrole, Dp ) N,Ndimethylaminopropylamide, G ) glycine, â ) â-alanine, and γ ) γ-aminobutyric acid), were synthesized and c...

متن کامل

DNA Minor Groove Recognition by Multiple Thiophene/Pyrrole Pairs

Hairpin polyamides are synthetic oligomers that fold and bind to specific DNA sequences in a programmable manner. Internal side-by-side pairings of the aromatic amino acids N-methylpyrrole (Py), N-methylimidazole (Im), and Nmethylhydroxypyrrole (Hp) confer the ability to distinguish between all four WatsonCrick base pairs in the minor groove of B-form DNA. In a broad search to expand the hetero...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 92 22  شماره 

صفحات  -

تاریخ انتشار 1995